Swedish Microwave Days 2023

D-band LNA in Vertical III-V Nanowire Technology

May 23-25, 2023

Tobias Tired, NordAmps AB, Lund

VINNOVA

Lomma. Analog & RF Consulting

LUNDS UNIVERSITET

Why D-band ?

https://www.h2020-dragon.eu/overview/

Ericsson review, Microwave backhaul evolution - reaching beyond 100GHz, 2017

Semiconductor Technology

- Vertical structure low parasitics to substrate
- Simple manufacturing technology
- Higher mobility than Si
- Semi ballistic

3D-printed device models

• Single wire device cut in half

- LNA type device. Input device with:
 - 296 wires in parallel (black)
 - 8 fingers to reduce R_g (orange)
 - Drain fingers (white) to reduce parasitic capacitance
 - InAs mesa source layer (grey)

Device model

- Virtual source model (from MIT)
 - Semi-empirical model for quasi-ballistic transistors
 - Few physical parameters
 - Extrapolated from validated devices at L_g =120nm with f_T/f_{max} =123/130 GHz
 - This work: f_T/f_{max} =285/418 GHz for L_g =20nm

S. Rakheja, "Silicon MIT Virtual Source Model (VERSION=1.0.1), Microsystems Technology Laboratories," Massachusetts Institute of Technology, Cambridge, MA

- Virtual-source point x_{0:}carrier charge and density defined at this point (at the peak of the conduction band)
- Easiest to calculate charge density at VS point.
- I_d: product of local charge areal density times the local carrier velocity at any point in the channel.
- Id = $Q_i(x0) \times v_{xo} \times (F_{sat}) \times W$,

Vdsi/Vdsat Fsat = - $\left(1 + \left(\frac{Vdsi}{Vdsat}\right)^{\beta}\right)$

Device model with parasitics and noise sources

Nord\mps

Device model-NF_{min}

 NF_{min} vs frequency for Id=9.3 mA (input stage, NW=296, NF=8)

• NF_{min} vs I_d for f=50 and 150 GHz

NordAmps

Technology benchmark-NF_{min} @ 50 GHz

Technology	Feature size (nm)	fMAX (GHz)	Vbr (V)	NFmin (dB) at 50GHz**	Production or research?
GaAs pHEMT	100	185	7	0.5	Р
GaAs mHEMT	70	450	3	0.5	R*
GaAs mHEMT	35	900	2	1	R
InP HEMT	130	380	1	<1	R
InP HEMT	30	1200	1	<1	R
GaN HEMT	60	250	20	1	R
GaN HEMT	40	400	42	1.2	R
SOI CMOS	45	280	1	2-3	Р
SiGe-HBT	130	400	1.4	2	Р
InP DHBT	250	650	4	3	R*
InP DHBT	130	1100	3		R
NordAmps	20	418	0.6	0.8	R

Ericsson review, Microwave backhaul evolution – reaching beyond 100GHz, 2017

Rotational symmetric FEM structure: Current density

[µm]

FEM: Silvaco Blaze output characteristics

Device optimization with VerilogA compact model

- Starting point: NW=300 wires NF=6 fingers $L_g=25nm$ $f_T= 272 GHz and$ $f_{max}= 384 GHz$
- Simulate sensitivity in maximum f_T/f_{max} vs l_d for 11 model parameters
- Highest sens. for C_{gd}

Process Design Kit (PDK)

- PDK in Cadence
 - VerilogA model code
 - Parasitic extraction in Quantus
 - Electromagnetic simulations in EMX
 - Fast convergence, both in Periodic Steady State and Harmonic Balance
- Model code also for Microwave Office (AWR)

- Scalable P-cells
 - -N-type transistor
 - MIM- capacitors: 15 and 200nm dielectrics
 - Thin Film Resistor (TFR): 50 Ω/\Box
 - Transmission lines
 - Inductors

Back End of Line (BEOL)

- 0.5 μ m Au with BCB dielectric ϵ_r =2.65
- 4.2 μm to ground plane

3-stage LNA design

(Nord\mps

Simulation results 3-stage LNA

- S21=20.8 dB@147 GHz NF=4.8 dB@149 GHz Broadband S11
- Low gain @ 175 GHz
 MF increase

• Compression point and linearity:

 ICP_{1dB} =-21 dBm @ 146 GHz IIP_3 =-11 dBm for two tones @146 and 147 GHz.

Nord\mps

Conclusions

D-band LNA in Vertical III-V Nanowire Technology

- Compact model + Cadence PDK
- Predictive modeling close to commercial NF performance @ lower D-band frequencies
- III-V technology with $f_T/f_{max} = f_T/f_{max} = 285/418 \text{ GHz}$
- Minimum NF=4.8 dB @ 149 GHz
- Further process optimization increased competitiveness

An interesting technology for future millimeter wave applications !

